
The agritech industry is editing plant genomes to feed a growing population, expand the produce aisle, and make tastier, more convenient food products.
Consider the groundcherry. Unlike its relative, the tomato, the groundcherry has never been fully domesticated. The plant’s sprawling growth and habit of dropping its small orange fruits on the ground before they’re ripe make it an awkward crop to cultivate, and its commercial presence is mostly limited to farmers’ markets.
But Joyce Van Eck of the Boyce Thompson Institute in Ithaca, New York, and Zach Lippman of Cold Spring Harbor Laboratory are working to change that. Because they don’t have the option of domesticating the groundcherry over thousands of years of selective breeding, as agriculturists did with tomato plants, the researchers are using CRISPR-Cas9 gene-editing technology to reproduce some of the tomato’s domestication-associated genetic changes. The pair recently used CRISPR to mutate the groundcherry equivalent of the tomato’s SELF-PRUNING gene, to try to rein in the groundcherry’s sprawling shoots (Nat Plants, 4:766–70, 2018). They’ve also edited a gene called CLAVATA, which controls fruit size, to generate larger groundcherries.
By making these and other modifications, the researchers aim to develop a groundcherry that can be mass-produced and sold as “the fifth berry crop,” Lippman says, alongside blueberries, raspberries, strawberries, and blackberries. (See “Zach Lippman Susses Out How Gene Regulation Affects Plant Phenotypes” here.) In doing so, Lippman and Van Eck, both of whom consult for the agritech company Inari Agriculture, based in Cambridge, Massachusetts, join many other researchers and entrepreneurs hoping to use CRISPR-Cas9 to tinker with plant genomes in pursuit of goals such as expanding the diversity of produce in the supermarket and improving crop yield for a human population expected to reach 10 billion by 2050.
“You’ve got essentially arable land being taken out of production to build cities and towns,” says Oliver Peoples, CEO of agritech company Yield10 Bioscience, based in Woburn, Massachusetts. “At the same time you need to increase food production to feed the inhabitants of all those cities and towns. So clearly the only way that that works is that every acre of land has to become more productive.”
The potential of gene editing to address these problems has taken hold in the agricultural industry, with new companies hoping to capitalize on the technology sprouting up every year. “We can identify a handful [of companies] currently, but going forward that number will rise, perhaps even triple,” says Matt Crisp, CEO of Benson Hill Biosystems, an agritech company based in St. Louis, Missouri.
There have been a handful of regulatory successes, too. Since 2016, when a CRISPR-edited non-browning mushroom received the green light from the United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS), the agency has also confirmed that CRISPR-edited corn, soybeans, tomatoes, pennycress, and camelina would be free from some of the red tape associated with other genetically modified organisms (GMOs)—though they may be subject to regulation by the Food and Drug Administration and the Environmental Protection Agency at a later date.
While none of these CRISPR-edited crops have yet made it to market, new plants are being edited all the time: last year alone, for instance, published research included efforts to tweak the genomes of carrot, cacao, and lettuce. “We regularly eat between 50 and 100 food products from 50 to 100 different crops,” says Haven Baker, cofounder and chief business officer of North Carolina-based agritech company Pairwise. Despite some concerns and uncertainty about the regulatory future of genome-edited food, “there’s CRISPR research going on in almost all of them.”
Genetic improvement of crops has long been a goal for the agritech industry. But before CRISPR, most companies were limited to using transgenes—an approach that Tom Adams, cofounder and CEO of Pairwise, calls “a little bit of a blunt instrument.” Researchers couldn’t control where in the genome inserted transgenes landed, so they’d have to screen many plants until they found one in which the transgene had wound up in a good spot. While more-recent approaches, such as zinc finger nucleases and TALENS systems, have allowed researchers to edit specific genes, those techniques are expensive and still lack precision.
“Then CRISPR hit the scene, and it is fast and easy and inexpensive and gives great results,” says biotech expert and consultant Vonnie Estes, who worked for Monsanto in the ’90s and later for CRISPR-championing biotech Caribou Biosciences.
Researchers can use various techniques to insert CRISPR technology into plant cells: a gene gun to shoot the DNA or RNA in on tiny gold pellets, for example, or Agrobacterium tumefaciens, a crown gall bacterium and plant pest that inserts its DNA into plant genomes. A third approach is protoplast transformation, in which plant cells missing cell walls are transformed with CRISPR constructs. Transformed cells can then be cultured and eventually grown into plants.
Several companies are using these techniques to boost plant productivity. Yield10, for example, aims to improve the yields of crops such as canola and soybeans, and increase the oil content of these and other oilseeds. Company researchers are currently working to develop a variety of the yellow-flowered oilseed Camelina sativa, in which three genes, whose identities are proprietary, have been inactivated. Yield10 recently announced encouraging greenhouse results suggesting that these triple-edited camelina lines could increase the oil content of seeds, and plans to start field tests of the lines sometime this year.
The rules surrounding the regulation of CRISPR-edited crops are still in flux.
Pairwise, meanwhile, is focusing on making fruits and veggies more popular among consumers. The company, which started operating in 2018 and has so far attracted $25 million in investments, aims to shift people away from junk food by offering convenient produce. Just consider the success of easy-to-eat foods such as seedless watermelon, or baby-cut carrots (which are whittled down from normal carrots by machinery), suggests Adams. “When baby carrots got introduced, it basically doubled consumption of carrots and people were willing to pay for those carrots,” he says—“about five times as much as they pay for carrots that haven’t been made babies.” The company plans to use CRISPR-Cas9 and base-editing technology developed by Pairwise team member David Liu of Harvard University to make other fruits and vegetables easier to snack on. Pairwise won’t disclose information about specific products in development—but their first products should be on the market in four to five years, Adams says.
CRISPR could also be used to make tastier products, notes Benson’s Crisp. In traditional breeding, farmers tend to select plants with traits that benefit either the consumer or the farmer, he says. For example, some tomatoes can be shipped long distances, benefiting growers, but don’t taste very good, disappointing consumers. A goal for gene editing would be to engineer a tomato that has high yield, ships long distances, and tastes like it came from the garden, Crisp says.
One of the first CRISPR’d crops to hit the market might not be a food product at all, though food applications will likely follow. The crop is waxy corn, a variety edited to contain elevated levels of amylopectin and reduced levels of amylose via deletion of the gene Wx1. High-amylopectin cornstarch could improve freeze-thaw properties of frozen foods and make canned foods and dairy products creamier—though its first application, says a spokeswoman from Corteva Agriscience, the agricultural division of DowDuPont, will likely be as an adhesive to stick labels to bottles. Corteva expects that products containing the CRISPR’d starch, starting with adhesives, will be available within the next year or two.
To aid identification of genes underlying traits such as waxiness or sprawl, Benson, which has raised nearly $95 million from venture capitalists since 2012, has developed a software system called CROP-OS. The system has three main applications: Breed, to predict the outcomes of breeding different strains; Reveal, to find potential transgenes from other species; and Edit, to bring together information about different strains of crops, their genes, and their characteristics so that researchers can plan genome editing to suit their goals. Once collaborators have chosen the genes they want to edit, Benson either does the editing for them using Cas9 alternatives Cpf1 and Cms1, or, more often, ships them a CRISPR toolkit so they can do it themselves, Crisp says.
Company | Location | Year Established | Selected Tools/Services |
Focus Crops |
Benson Hill Biosystems | St. Louis, MO | 2012 | CROP-OS software; gene editing using CRISPR-Cpf1 and -Cms1 | Row crops edited for higher yield, stress resistance, and herbicide tolerance |
Corteva (agricultural division of DowDuPont) | Wilmington, DE | 2018 | CRISPR-Cas9 | Waxy corn modified for altered starch composition |
Pairwise | Durham, NC | 2018 | CRISPR-Cas9 with base editing | Row crops such as corn and soybeans with increased productivity, disease resistance; more-convenient fruits and vegetables |
Syngenta | Basel, Switzerland | 2000 | CRISPR-Cas9 | Corn, soy, wheat, tomato, sunflower, modified to increase yield |
Tropic Biosciences | Norwich, UK | 2016 | CRISPR and other techniques | Disease-resistant bananas, decaffeinated coffee |
Yield10 Bioscience | Woburn, MA | 2015 | CRISPR-Cas9 | Camelina engineered for higher oil content |
As industry researchers explore the opportunities to genetically improve consumer crops, they’re keeping a close eye on the regulatory landscape that governs their ultimate success, says Estes. The biotech industry is “at a kind of a weird point right now,” she notes. “There’s so much work that’s being done in universities. . . . But as far as getting it into commercial companies and having them bring it to market, everyone’s sitting on the fence a little bit and a little nervous.”
That’s because the rules surrounding the commercialization of gene-edited crops are themselves in flux, as regulators struggle to keep up with rapid technological developments. Older, transgenic approaches involving the introduction of foreign DNA are tightly regulated in the US and Europe, leading to considerable costs for companies trying to market transgenic products. “Regulations around approval for the use of a plant species that’s been genetically engineered can take up to a decade or more and cost up to $130 million per genetic change,” says Peoples. So it’s only something companies can do if they have a lot of money to invest—and they’ll only do it for a crop that’s going to make a lot of money, such as corn or soybeans.
Products generated by gene-editing techniques such as CRISPR have historically not been subject to the same rules, meaning that a larger number of smaller companies can afford to get into the sector. Genome editing has “really democratized this sort of innovation in the agricultural space in enabling smaller companies like Yield10 and others to begin to really make an impact using new approaches that perhaps the ag majors hadn’t tried in the past,” Peoples says.
However, the days when gene-edited crops circumvent regulation may be drawing to a close. Last July, the European Court of Justice ruled that, going forward, gene-edited crops would be subject to the same stringent regulations in Europe as transgenic plants—a ruling that surprised many researchers and went against the counsel of the court’s own advisor on the subject. The court based its decision on the fact that gene-edited plants, like other GMOs, change organisms’ genetic material in ways that do not occur in nature.
Crisp says that he and other researchers in agritech were sorely disappointed by the ruling, and there are now moves to try to change course. The European Commission’s chief scientific advisors issued a statement highlighting the impossibility of determining whether a mutation occurred through gene editing or through natural mutation and suggested it would be better to focus on the safety of the product, rather than on the process by which it was created. (See “Opinion: GE Crops Are Seen Through a Warped Lens” here.)
Regulation has so far taken a different path in the US. In 2016, lawmakers passed the National Bioengineered Food Disclosure Law, which required manufacturers to label products containing “bioengineered” food—defined as food “(A) that contains genetic material that has been modified through in vitro recombinant deoxyribonucleic acid (DNA) techniques; and (B) for which the modification could not otherwise be obtained through conventional breeding or found in nature.”
Jennifer Kuzma, codirector of the Genetic Engineering and Society (GES) Center at North Carolina State University in Raleigh, tells The Scientist that part (B) of this definition was probably added “in order to exclude gene-edited plants” from the labeling requirement, and thus reduce regulatory red tape for these products. Similarly, a draft ruling issued last May about how the requirement would be implemented omitted mentions of “editing” or “CRISPR,” and the final ruling, issued in December, does not explicitly state that gene-edited foods will be subject to the disclosure requirements.
In another regulatory win for producers of CRISPR-edited crops, last March, the US Secretary of Agriculture Sonny Perdue announced that the USDA would not regulate crops that “could otherwise have been developed through traditional breeding techniques as long as they are not plant pests or developed using plant pests,” again clearing the way for plants created through genome editing. (Even methods that rely on A. tumefaciens can skirt the pest clause by ensuring that no bacterial sequences remain in the genome of the final product.)
Of course, not everyone in the US believes that less regulation is better. As Kuzma writes in a recent review article, most consumers want the government to ensure the safety of genetically modified crops, and 60 percent of biotech experts she surveyed support some kind of pre-market oversight. Kuzma, who says she is neither for nor against the development of gene-edited crops, notes that some regulation, as well as clear labeling of gene-edited foods, is necessary to avoid a repeat of the consumer backlash against GMOs, and that these measures are in the long-term interests not just of consumers but also of agritech companies.
Estes believes consumer backlash will be less of an issue once appealing CRISPR’d crops, such as the groundcherry, start to hit shelves. “Some segments of people aren’t going to care as much about how it was done,” she says, “as long as they get this amazing thing they get to eat.”
Ashley P. Taylor is a freelance writer and science journalist in Brooklyn, New York.
Scientists at Stanford have built a detailed timeline of the gene activity leading up to meiosis in corn, a finding with potential implications for plant breeding as well as sexually reproductive organisms more broadly.
Birds do it. Bees do it. Plants do it, too. And for good reason: Sexual reproduction has evolved as nature’s way of shuffling the genetic deck of cards, so to speak. That shuffling actually starts before organisms make sex cells (sperm and egg). In this process, called meiosis, matching chromosomes inherited from an organism’s mother and father swap sections, yielding cells that are genetically distinct from either parent. This genetic rejiggering churns out diverse combos of traits that can be “winning hands” for offspring, giving them a competitive advantage.
Compared to animals, however, just how plants enter into this meiotic shuffling is poorly understood. As embryos, animals dedicate a so-called germ line of cells for future meiosis, but plants delay recruiting cells until very late in development, and even then, they assign the job to just a handful of cells inside each flower.
Now in a new study, Stanford researchers have constructed a timeline of cells from corn, or maize, plants undergoing the meiotic transition. “We used a new method to look at a major life cycle transition in corn in a way that was not previously possible, allowing us to discover stages during this transition,” said Brad Nelms, a postdoctoral researcher in the lab of Virginia Walbot, a professor of biology at Stanford’s School of Humanities and Sciences, and coauthor with her on the study.
The findings, published in the April 5 issue of the journal Science, show that the path to meiosis in corn proceeds smoothly as genes switch on, then is punctuated by two sharp jumps in activity during the earliest meiotic stages. More generally, the results also demonstrate how new light can be shed on old, previously examined biological processes — such as meiosis — by bringing novel tools to bear. Such an approach has implications far beyond the realm of plant life.
“Meiosis has primarily been examined by focusing on changes in chromosome structure,” said Nelms. “We looked at meiosis instead by gene expression and found that this provided complementary information.”
Walbot added: “One takeaway from our paper is that it is valuable to look at different aspects of cell physiology during meiosis — changes that are not detectable with one method might be obvious with another. This finding is likely true in other organisms, including humans.”
Nelms and Walbot began their study by gathering corn grown in a greenhouse on Stanford’s campus. The researchers then isolated the tiny, tube-shaped organs (called anthers) where spores produced through meiosis eventually develop into pollen.
Over the course of a week, the researchers followed the development of the collected reproductive cells as they prepped for meiosis. Nitty-gritty details from a genetic perspective were captured using a technique known as single-cell RNA-sequencing (scRNA-seq). RNA is the molecular messenger between genes in DNA and the cellular factories that build proteins based on those genetic blueprints. scRNA-seq captures a snapshot of all of the messenger RNAs expressed within a cell, as well as their relative concentrations, at a single moment in time. By stitching together different snapshots of the same cell, scientists can generate a detailed timeline showing how different proteins turn on and off during a cellular process — in this case meiosis. Furthermore, cells with similar genetic identities can be grouped together and tracked through time.
The scientists found that the most notable changes happened as the cells put the finishing touches on their preparation for meiosis and began entering its earliest phase. At two timepoints, about a quarter of the most-expressed genes changed twofold or more in their activity levels. The researchers speculate that the dual jumps in gene expression have to do with alternations in chromosome structure during meiosis, as well as larger cell differentiation as the cells get ready for later pollen development.
In order to find out more about these jumps, Nelms and Walbot also studied meiosis in maize mutants. In one mutant strain, the non-reproductive cells surrounding the reproductive cells fail to mature. In another mutant, the reproductive cells’ progression through meiosis was derailed. In both cases, however, the newfound bumps in gene activity still took place. This suggested that signals from adjacent cells were not required for the observed spikes, and that even if the rest of meiosis fails, the sex cells still execute their hardwired development program.
“We are the first to document these dual increases in gene expression during meiosis in corn, but they’re likely to be happening in other organisms as well,” Walbot said.
The study provides a roadmap for following the early events during pollen development in plants. Getting a stronger handle on meiosis initiation could also help plant breeders better mix-and-match genetic combinations to create new crops with desirable traits. The genetic rearrangement during meiosis is inefficient; the few exchanges that do occur between chromosomes are often of a chunky variety, involving blocks of neighboring genes moving en masse. “Imagine playing cards and cutting the deck instead of shuffling between games—each game would be somewhat similar to the last,” said Nelms.
Nailing down the particulars of how plant cells gear up for and then proceed through meiosis could indicate ways to tip the scales toward more genetic recombination—or its opposite. In addition to mixing traits, breeders face the converse challenge of fixing traits; that is, ensuring their inheritance by future crop generations. Examples of desirable traits include yield-boosting drought and disease resistance, or higher nutritional value.
“Understanding meiosis better may provide ways to eliminate genetic recombination when desired,” said Walbot. “In this process, plants produce seed identical to the parent plant, passing combinations of advantageous traits to all progeny and benefitting us, the consumers.”
The study was funded by the National Science Foundation. Postdoctoral fellow Brad Nelms was supported by a fellowship from the same agency.
Claudio Hetz es director del Instituto de Neurociencia Biomédica (BNI) de la U. de Chile, además de investigador asociado del Buck Institute de Estados Unidos. Su trabajo es fundamental, porque el envejecimiento está asociado a enfermedades como el alzhéimer, que en 2050 afectará a 500 mil personas solo en Chile. Hoy una familia gasta un promedio de dos sueldos mínimos mensuales en una persona con este mal.
El campo de investigación para el retraso del envejecimiento está mostrando notorios avances. Esto es clave para enfermedades como el alzhéimer, que en 2050 afectará a 500 mil personas en Chile, según cálculos actuales. Hoy el 1% del PIB del mundo se gasta en cuidados paliativos solo para esta enfermedad, mientras en nuestro país una familia gasta un promedio de dos sueldos mínimos en una persona con este mal.
Por eso, resulta fundamental el trabajo de los investigadores del área. Uno de los destacados es Claudio Hetz, director del Instituto de Neurociencia Biomédica (BNI) de la Universidad de Chile, además de investigador asociado del Buck Institute de Estados Unidos. Fue uno de los expositores en el Festival Puerto de Ideas, que se realizó recientemente en Antofagasta.
“Lo más fundamental es que el campo recién hace muy pocos años llegó a consensos, porque la investigación en envejecimiento era pobre, muy controvertida y poco respetada”, explicó Hetz.
“Costó mucho introducir los conceptos originales: que hay genes que regulan cómo envejecer. Basados en estos conceptos, hay principios fundamentales que, se ha demostrado, si se modifican, pueden cambiar el curso del envejecimiento. Lo fundamental es que hay evidencia sólida en múltiples especies, respecto de que si uno toca estos pilares se puede aumentar la expectativa de salud y de vida”, señaló.
Claudio Hetz.
Hetz destacó que, en la actualidad, lo que está revolucionando el campo es que estas ideas están asentadas: “En estos momentos, en Estados Unidos se están probando algunas estrategias farmacológicas –no sé si decirles terapéuticas, porque no vas a tratar enfermedades– para alterar el curso natural del envejecimiento, con el fin de disminuir la probabilidad de enfermarte en el futuro”.
Buck Institute de Estados Unidos –al cual Hetz está vinculado– es una de las entidades que han generado drogas que eliminan las células senescentes, que son aquellas que con el envejecimiento detienen su crecimiento y comienzan a producir inflamaciones que dañan el cuerpo. Estas inflamaciones pueden conducir a enfermedades como artritis, alzhéimer, enfermedad de Parkinson y cáncer, entre otros.
“Lo que hacemos con estas terapias, que se están probando en varios ensayos clínicos, es crear compuestos que matan selectivamente las ‘células viejas’ y dejan que el resto siga su curso”, explicó Hetz. Y aunque faltan algunos años, sus resultados tendrán efectos en la expectativa de salud.
“Por ejemplo, en estos ensayos se prueban estas drogas y ven tu probabilidad de sufrir artritis o una enfermedad autoinmune”, resaltó.
Hetz calificó de “impactante” la literatura de los últimos tres años. “Todos estos modelos experimentales de enfermedades cardíacas, cerebrales, etc., pueden ser casi curadas al tomar drogas que eliminan tus células senescentes en mamíferos. Va a ser como un antibiótico que te mata tus células viejas y mantiene tu estado de salud. Suena como ciencia ficción, pero ya se están desarrollando inversiones millonarias”, indicó.
El científico estima que, en unos años, los humanos podremos suplementar nuestra dieta con estas drogas.
En diciembre, el investigador fue parte de la conmemoración de los 30 años del Buck Institute y fue testigo de un debate acerca del impacto que estas drogas tendrán en el sistema de salud y el sistema normativo. “¿Cómo hoy puedes obligar a una Isapre a financiarte un fármaco que evite que te enfermes? A corto plazo no es rentable, solo en el largo plazo, porque si tus afiliados no se enferman, es negocio redondo”, reflexionó.
Hoy el problema es que el desarrollo de las primeras drogas es altísimo. Hetz lo ve en terapia génica, su área: un tratamiento puede costar US$400 mil, unos 300 millones de pesos. Sin embargo, a futuro el costo podría reducirse.
“Va a revolucionar la medicina”, apostó.
Hetz además enfatizó la importancia de generar estrategias seguras, para evitar efectos secundarios nocivos, ya que el funcionamiento del cuerpo a nivel molecular es extremadamente complejo y los órganos están interrelacionados. “Lo que estamos haciendo es usar genes para tratar enfermedades, donde inyectamos virus modificados y la gracia es que se lo entregas, por ejemplo, solo a la población de neuronas que está afectada. No al resto del cerebro ni al resto del cuerpo”, detalló.
El problema de los fármacos actuales para una enfermedad cerebral, es que el cuerpo tiene barreras naturales que impide que lleguen, por lo cual los pacientes deben tomar concentraciones altísimas que tienen efectos contraproducentes. De ahí la importancia de la terapia génica.
En su campo de estudio específico, que es el equilibrio de las proteínas, el equipo de Hetz está a la vanguardia a nivel mundial. Ya han generado propiedad intelectual y patentes que están en proceso de licenciar a nivel internacional para que el producto llegue al sistema médico. Los fármacos, destacó Hetz, eventualmente serán para las nuevas generaciones, que los podrán consumir de por vida, al tiempo que realizan otras actividades para tener un buen envejecimiento, como realizar ejercicio físico, tener una dieta equilibrada, etc.
Date: January 23, 2019
Source: University of California – San Diego
Summary: Using active genetics technology, biologists have developed the world’s first CRISPR/Cas9-based approach to control genetic inheritance in a mammal. The achievement in mice lays the groundwork for further advances based on this technology, including biomedical research on human disease. Future animal models may be possible of complex human genetic diseases, like arthritis and cancer, which are not currently possible.
Paleontólogos de la U. Austral encontraron el registro en Pilauco, cerca de Osorno. Nunca se había encontrado una huella humana tan antigua en el continente.
Monte Verde, con restos datados entre 14.500 y 18.500 años, tiene el registro arqueológico más antiguo del poblamiento de América, cuyo hallazgo en 1980, colisionó con las teorías convencionales del poblamiento del continente, que fechaba la llegada del hombre al nuevo mundo hace 13.000 años.
Sin embargo, muchos paleontólogos dudan. “Si quieres que crea que el primer asentamiento humano fue en Monte Verde, tienes que encontrar huesos”, dijo a Qué Pasa en enero pasado, Michel Brunet en el marco del Congreso Futuro, uno de los paleontólogos más famosos del mundo y quien descubrió restos fósiles homínidos de más de entre 6 y 7 millones de años de antigüedad en Chad, África.
Ahora, los científicos tienen una nueva prueba que podría solidificar la teoría del poblamiento temprano del continente: arqueólogos de la Universidad Austral de Chile (Uach), descubrieron una huella humana fechada en 15.600 años, lo que la convierten en la más antigua descubierta en América.
La huella se encontró en la excavación de Pilauco, en Osorno (a 100 km al norte de Monte Verde), y donde los científicos han estado cavando desde 2007.
La huella fue descubierta por la paleontóloga Karen Moreno y al geólogo Mario Pino. “Tiene la morfología del dedo gordo del pie, y los dedos laterales bien delimitados y toda la perturbación que se hizo en el sustrato, es acorde a lo que le pasaría a cualquier persona que trata de caminar en el barro”, dijo Moreno en un comunicado de la Uach, directora del Magíster en Paleontología de esta universidad.
La huella fue fechada mediante la aplicación de técnicas de datación por radiocarbono en el material orgánico de la planta donde se encontró la impresión.
Los investigadores afirmaron que sobre la base a la forma general de la huella, se asignó a la icnoespecie Hominipes modernus, usualmente relacionada a especies del género Homo, especialmente Homo sapiens, conclusión a la que llegaron mediante diversos experimentos donde se evaluó las propiedades del registro y las condiciones ambientales bajo las que se generó. Los resultados demuestran que esta evidencia fue producida por una persona adulta que caminaba descalza.
“Esta huella es bastante grande, tiene 23 centímetros de largo y correspondería a una talla 43 actual”, agregó la experta. “Basados en la evidencia disponible, concluimos que un humano produjo la huella al caminar sobre un sustrato blando, como barro o turba, saturado de agua”, añadió Moreno.
Un equipo de investigadores chilenos trabaja en el desarrollo de una “vacuna de información”, destinada a prevenir el contagio y la dispersión de enfermedades infecciosas mediante la entrega de información fidedigna, a tiempo y de manera apropiada, informaron los responsables del proyecto.
El proyecto considera la forma en que la información se propaga en la sociedad y propone fórmulas para que la verdad se difunda de manera óptima y le gane a los rumores y las noticias falsas.
Gracias a las investigaciones realizadas por un equipo de investigación de la Pontificia Universidad Católica (PUC), encabezados por el Dr. Alexis Kalergis, Director del Instituto Milenio de Inmunología e Inmunoterapia (IMII) e investigador del Instituto de Ciencias Biomédicas (ICBM) y de la Sociedad de Microbiología de Chile (SOMICH), hoy en día se cuenta con la primera vacuna desarrollada para combatir el virus sincicial, enfermedad global de alta incidencia de hospitalizaciones y fallecimientos en menores de 2 años, la cual puede ser administrada en recién nacidos. La vacuna pasó la Fase Clínica 1, cumpliendo todas las regulaciones nacionales e internacionales establecidas por el Instituto de Salud Pública (ISP) y la Administración estadounidense de Medicamentos y Alimentos (FDA), evidenciando que es una formulación segura y muy bien tolerada por los recién nacidos. Por otra parte, la PUC estableció un convenio con el Ministerio de Salud para asegurar a futuro el acceso a toda la población de la vacuna, mediante el Programa Nacional de Inmunizaciones.
Investigadora de la Universida de Concepción, Astrid Gudenschawer, revela el potencial uso biomédico del musgo Shpagnum magellanicum (Pompón) que se distribuye a lo largo del sur de chile en ambientes de turberas y humedales, y que ha sido tradicionalmente exportado para ser utilizado como sustrato de orquídeas y champiñones. Gudenschawer estudió a nivel molecular los compuestos de este musgo, encontrando que alguno de ellos tiene la capacidad de inhibir la generación de estrógenos, el cual aumenta en mujeres post menopaúsicas, y con ello inhibir la proliferación y generación de célular cancerígenas. El formato de esta formulación será como suplemento alimenticio en cápsulas o polvo.
Un reciente estudio publicado en la revista Nature Communications, revela que investigadores de Berkeley University (California) lograron recuperar la visión en ratones ciegos mediante el uso de terapia génica. El grupo de investigadores diseñó un virus, al cual se le insertó un gen del receptor de luz sensible (opsina) que normalmente se expresa en las células fotoreceptoras de conos, para lograr incorporar el gen en las células ganglionares y hacerlas sensibles a la luz. La degeneración retinal, causante de la ceguera, mata las células fotoreceptoras de la retina: conos y bastones, pero no afecta al resto de las células retinales, tales como las células bipolares y ganglionares. Por ello, los investigadores buscaron activar la sensibilidad de la luz en células ganglionares, logrando que éstas enviasen una señal al cerebro siendo interpretada como visión. Los investigadores esperan que dentro de tres años, la terapia propuesta pueda ser evaluada en personas que hayan perdido la vista a causa de degeneración retinal.
Investigadores de la University of Melbourne (Australia), buscan alternativas para mejorar la adaptación de los corales a mayores temperaturas y acidez de los océanos, uno de los grandes efectos causados por el cambio climático. Mediante el uso de un simulador oceánico que posee el Instituto Australiano de Ciencias Marinas (AIMS), un grupo de investigadores liderados por Madeleine van Oppen, experta en genética de corales, pueden aprovechar la oportunidad de generar condiciones naturales y futuras en el simulador para seleccionar aquellos individuos que logran sobrevivir bajo las condiciones de estrés causadas por el cambio climático. La investigación se centra realizar cruzas para generar híbridos con mayores tolerancias, potenciar un microbioma que permita al coral resistir el blanqueamiento y modificar algas simbióticas de los colares para ayudarlos a resistir la elevación de las temperaturas oceánicas.