Una plataforma de análisis de ARN de código abierto se ha utilizado con éxito en células vegetales por primera vez, un gran avance que podría anunciar una nueva era de investigación fundamental y reforzar los esfuerzos para diseñar plantas de cultivo de biocombustibles y alimentos más eficientes.

La tecnología, llamada Drop-seq, es un método para medir el ARN presente en células individuales, lo que permite a los científicos ver qué genes se están expresando y cómo se relaciona con las funciones específicas de los diferentes tipos de células. Desarrollado en la Escuela de Medicina de Harvard en 2015, el protocolo compartido libremente anteriormente solo se había utilizado en células animales.

“Esto es realmente importante para entender la biología de las plantas”, dijo la investigadora líder Diane Dickel, científica del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab) del Departamento de Energía. “Al igual que los humanos y los ratones, las plantas tienen múltiples tipos de células y tejidos. Pero aprender sobre las plantas a nivel celular es un poco más difícil porque, a diferencia de los animales, las plantas tienen paredes celulares, lo que dificulta la apertura de las células para la genética. estudiar.”

Para muchos de los genes en las plantas, tenemos poca o ninguna comprensión de lo que realmente hacen, explicó Dickel. “Pero al saber exactamente en qué tipo de célula o etapa de desarrollo se expresa un gen específico, podemos comenzar a entender su función. En nuestro estudio, demostramos que Drop-seq puede ayudarnos a hacer esto”.

“También demostramos que puede usar estas tecnologías para comprender cómo responden las plantas a diferentes condiciones ambientales a nivel celular, algo que a muchos biólogos de plantas en Berkeley Lab les interesa porque poder cultivar en condiciones ambientales deficientes, como la sequía, es esencial para nuestra producción continua de alimentos y recursos de biocombustibles “, dijo.

Dickel, quien estudia genómica de mamíferos en la División de Genología Ambiental y Biología de Sistemas de Berkeley Lab, ha estado usando Drop-seq en células animales durante varios años. Una fan inmediata de la facilidad de uso y la eficacia de la plataforma, pronto comenzó a hablar con sus colegas que trabajan en plantas sobre cómo tratar de usarla en células vegetales.

Sin embargo, algunos se mostraron escépticos de que tal proyecto funcionaría con la misma facilidad. En primer lugar, para ejecutar las células vegetales a través de un análisis de secuencias de ARN de una sola célula, deben ser sometidas a protoplastas, lo que significa que deben ser despojadas de sus paredes celulares con un cóctel de enzimas. Este proceso no es fácil porque las células de diferentes especies e incluso diferentes partes de la misma planta requieren cócteles de enzimas únicos.

En segundo lugar, algunos biólogos de plantas han expresado su preocupación de que las células se alteran demasiado significativamente mediante la protoplastia para proporcionar una visión del funcionamiento normal. Y, finalmente, algunas células vegetales son simplemente demasiado grandes para pasarlas por las plataformas existentes de RNA-seq de una sola célula. Estas tecnologías, que surgieron en los últimos cinco años, permiten a los científicos evaluar el ARN dentro de miles de células por ejecución; Los enfoques anteriores solo podían analizar de docenas a cientos de celdas a la vez.

Sin dejarse intimidar por estos desafíos, Dickel y sus colegas en el DOE Joint Genome Institute (JGI) se unieron a investigadores de UC Davis que habían perfeccionado una técnica de protoplastia para el tejido de la raíz de Arabidopsis thaliana (berro de oreja de ratón), una especie de hierba pequeña de floración Que sirve de organismo organismo modelo.

Después de preparar muestras de más de 12,000 células de la raíz de Arabidopsis, el grupo se emocionó cuando el proceso de Drop-seq fue más suave de lo esperado. Sus resultados completos fueron publicados esta semana en Cell Reports .

“Cuando lanzábamos la idea de hacer esto en las plantas, la gente mostraba una lista de razones por las cuales no funcionaría”, dijo Dickel. “Y diríamos, ‘está bien, pero intentémoslo y veamos si funciona’. Y luego realmente funcionó. Nos sorprendió sinceramente lo sencillo que realmente terminó siendo”.

La naturaleza de código abierto de la tecnología Drop-seq fue crítica para el éxito de este proyecto, según el coautor Benjamin Cole, un científico de genómica de plantas en JGI. Debido a que Drop-seq es económico y utiliza componentes fáciles de ensamblar, les brindó a los investigadores un medio de bajo riesgo y bajo costo para experimentar. Ya se está construyendo una ola de interés. En el tiempo previo a la publicación de su artículo, Dickel y sus colegas comenzaron a recibir solicitudes, de parte de otros científicos en Berkeley Lab, JGI, y más allá, para obtener consejos sobre cómo adaptar la plataforma para otros proyectos.

“Cuando hablé por primera vez con Diane para probar el Drop-seq en plantas, reconocí el enorme potencial, pero pensé que sería difícil separar las células de la planta lo suficientemente rápido como para obtener datos útiles”, dijo John Vogel, científico líder de genómica funcional de plantas en JGI. “Me sorprendió ver lo bien que funcionó y lo mucho que pudieron aprender de su experimento inicial. Esta técnica va a ser un cambio de juego para los biólogos de plantas porque nos permite explorar la expresión genética sin moler órganos de plantas enteras, y los resultados no se confunden con las señales de los pocos tipos de células más comunes “.

Los autores anticipan que la plataforma y otras tecnologías similares de RNA-seq, eventualmente se convertirán en una rutina en las investigaciones de plantas. El principal obstáculo, señaló Dickel, será el desarrollo de métodos de protoplasto para cada planta de interés del proyecto.

“Parte de la misión de Berkeley Lab es comprender mejor cómo responden las plantas a las condiciones ambientales cambiantes, y cómo podemos aplicar este entendimiento para utilizar mejor las plantas para la bioenergía”, señaló la primera autora Christine Shulse, actualmente afiliada a JGI. “En este trabajo, generamos un mapa de expresión génica en tipos de células individuales de una especie de planta en dos condiciones ambientales, lo que es un primer paso importante”.

Este artículo ha sido reeditado a partir de  materiales  proporcionados por el  Laboratorio de Berkeley.. Nota: el material puede haber sido editado por longitud y contenido. Para más información, contactar con la fuente citada.

Referencia: Shulse et al. 2019. Perfilado de alto rendimiento de transcriptomas de células individuales de tipos de células vegetales. Informes celulares. DOI:
https: //doi.org/10.1016/j.celrep.2019.04.054.

Fuente: www.technologynetworks.com

Test rápido para detectar el Hanta podría ver la luz este 2019: ayudaría a bajar la mortalidad

| Noticias |

Actualmente existen múltiples formas de diagnosticar infecciones por hantavirus en pacientes. Investigadores del laboratorio de virología del Instituto de Microbiología de la Universidad Austral de Chile junto al Centro de Referencia de la Macrozona Sur están desarrollando una nueva plataforma de diagnóstico rápido para detectar la cepa del virus Andes presente en Chile. Este atractivo test sustituye los reactivos limitantes que tradicionalmente eran importados desde el Instituto Malbrán de Argentina, o el CDC (Center for Disease Control de EE.UU.) a través del Instituto de Salud Pública de Chile. Una vez validado el test, Chile podría contar con una nueva alternativa de diagnóstico de fabricación 100% nacional. La nueva plataforma en desarrollo corresponde a un test inmunocromatográfico que busca reemplazar el test de importación actualmente usado, el cual se basa en la detección de un hantavirus que circula en Europa (virus Puumala). Con ello, la Dra. Maritza Navarrete espera que el nuevo kit pueda alcanzar una mayor sensibilidad y especificidad con la cepa de hantavirus nacional comparado con el test europeo. Además, debido a su simple uso este kit podrá estar disponible a lo largo del país incluyendo a los centros de menor complejidad. Este test rápido puede ayudar a la decisión diagnóstica de pacientes que ya muestren síntomas, sin embargo, como este ensayo depende del desarrollo de la respuesta inmune del paciente contra el virus (IgM), es probable que no permita avanzar hacia un diagnóstico temprano del síndrome cardiopulmonar por hantavirus. Previamente otros grupos nacionales demostraron que es factible detectar el genoma viral en células de la sangre periférica, antes que se desarrolle la respuesta inmune en personas asintomáticas (Ferrés, Vial et al., JID 2007; doi:10.1086/516786). Por lo tanto es de vital importancia que como país no solo se haga diagnóstico en pacientes que ya muestran los síntomas de la enfermedad, sino que se implemente un diagnóstico temprano por RT-PCR para el mayor número de casos sospechosos y así ayudar al manejo del paciente de forma preventiva. Una intervención, por ejemplo con plasma inmune, es compleja cuando el paciente está sintomático debido a que el virus ya se encuentra diseminado en todo el organismo. Tratar al paciente tan tarde conlleva las elevadas tasas de mortalidad que actualmente conocemos para hantavirus.

Por Nicole Tischler, investigadora de virología molecular en la Fundación Ciencia & Vida.

Fuente: www.biobiochile.cl

Yogurt de pajaritos puede ser una gran ayuda para personas con diabetes, según estudio

| Noticias |

La investigación realizada por una académica de la U. de Valparaíso sostiene que el consumo de kéfir puede «mejorar los síntomas de malestar gastrointestinal» en personas diabéticas que usan metformina.

El kéfir, popularmente conocido en Chile como “yogurt de pajaritos”, es una bebida fermentada que suele ser recomendada para tratar problemas digestivos, combatir infecciones bacterianas y mejorar la salud de los huesos, además de ser una buena opción para las personas intolerantes a la lactosa.

Un reciente estudio realizado por profesionales de la Universidad de Valparaíso indica además que este tipo de alimento probiótico puedeser útil para las personas diabéticas.

La doctora en Microbiología, Claudia Ibacache, directora del Centro de Microbioinnovación (CMBi) de la Facultad de Farmacia de esta casa de estudios dirigió el estudio, que se encargó de evaluar los efectos del consumo del kéfir sobre la microbiota intestinal de adultos con diabetes que se tratan con metformina, medicamento que produce una serie de efectos colaterales como diarrea, dolores estomacales, acidez e hinchazón.

La investigación, según recoge BioBioChile, sostiene que algunas cualidades del yogurt de pajaritos son “su capacidad de restituir la composición de la flora intestinal e introducir funciones favorables y útiles para las comunidades microbianas intestinales, ayudando a mantener un buen control metabólico”.

El estudio consistió en una intervención nutricional en pacientes con diabetes mellitus 2, los que fueron asignados a dos grupos.

Uno de estos recibió dosis diarias de kéfir y el otro grupo consumió un yogurt convencional libre de microorganismos por un periodo de ocho semanas. Se midieron parámetros metabólicos antes y después de la intervención.

Para la investigación se usó la metagnómica, una herramienta que permite obtener la secuencia del genóma de toda la comunidad de microorganismos encontrados en la microbiota de cada paciente intervenido.

“El estudio proporciona evidencia de que el probiótico kéfir puede mejorar los síntomas de malestar gastrointestinal“, señala Ibacache.

Los resultados del estudio determinaron que a las dos semanas de tratamiento aumentó la proporción de algunos grupos de bacterias de la microbiota: “A las ocho semanas observamos que disminuyeron significativamente los triglicéridos (grasas que en exceso pueden aumentar el riesgo de enfermedades del corazón). Además, el kéfir demostró mejorar la hinchazón, acidez, gases y el tránsito intestinal de los pacientes tratados“.

Complementando esto, la académica señala en la investigación que “el consumo de kéfir sería una buena estrategia complementaria para modular la microbiota intestinal de los pacientes DM2 en forma beneficiosa, además de ayudar al control de los triglicéridos y a mantener una buena salud intestinal”.

Fuente: www.cnnchile.com

Investigadores de Chile y México estudian diversidad microbiana de suelos antárticos

| Noticias |

La bióloga Patricia Valdespino, doctora en Ciencias del Mar y Limnología por la Universidad Nacional Autónoma de México (UNAM), se encuentra colaborando en un proyecto gestionado por Chile y México a través de la Agencia Mexicana de Cooperación Internacional para el Desarrollo (AMEXCID) y la Agencia Chilena de Cooperación Internacional para el Desarrollo (AGCID), del Ministerio de Relaciones Exteriores de Chile.

El proyecto “Impactos de la diversidad microbiana de ecosistemas polares frente al cambio ambiental” tiene una duración de dos años y durante febrero colectó material en la isla Rey Jorge.

Entre sus labores de terreno, estuvo la recolección de muestras de tapetes microbianos (conocidos también como biofilms o matas microbianas) junto a su ambiente circundante, en este caso suelos antárticos. La actividad que realizó a fines de febrero en la isla Rey Jorge con la colaboración del biotecnólogo del Instituto Antártico Chileno (INACH), Alejandro Font. El material será sometido a un análisis de metagenómica, es decir, el secuenciamiento de todo el material genético que contengan las muestras, para su posterior análisis bioinformático colaborativo.

“Un estudio así requiere de un grupo grande de científicos, en este caso, mexicanos y chilenos”, indicó la especialista. Quienes coordinan este proyecto son el Dr. Marcelo González, jefe del Departamento Científico del INACH, y la Dra. Luisa Falcón, del Instituto de Ecología de la UNAM.

Instituto Antártico Chileno | Chilean Antarctic Institute
Instituto Antártico Chileno | Chilean Antarctic Institute

“Esto igual se encadena a un proyecto anterior que tuvo como apoyo a investigadores uruguayos y argentinos”, agregó Valdespino, ante la oportunidad de estar presente en las bases Artigas (Uruguay), y Carlini (Argentina), previamente en 2016 y 2017, para un muestreo de características similares.

La investigadora señaló que las interrogantes que se encuentra explorando, se relacionan con la biogeoquímica: ella pretende indagar en el entendimiento del rol que cumplen los microbios en el reciclaje de algunos elementos principales de la vida, así como ver sus patrones de diversidad, las estrategias de supervivencia que poseen y su adaptabilidad a las condiciones del cambio climático.

“Es la tercera vez que voy a la isla Rey Jorge a realizar este muestreo. A pesar de que esta ocasión duró pocos días, este fue mejor dirigido, no tan exploratorio como los primeros, por lo que esperamos pueda apoyar de forma más precisa en nuestras interrogantes. Como estoy trabajando en California (Estados Unidos), algunos análisis los haremos ahí”, explicó.

Tapetes microbianos antárticos

Los tapetes microbianos pueden congregar cientos o miles de especies diminutas. En una película tan delgada es posible encontrar una gran diversidad de microorganismos. Ello hace que los tapetes sean los ambientes más diversos en la Antártica terrestre.

“La Antártica ofrece una oportunidad única en los objetos de estudio para los científicos. En mi caso, al haber estudiado en sistemas tropicales, esto resultó un cambio significativo”, comentó.

Ante ello, destaca el aporte que profesionales del Instituto Antártico Chileno realizan en el análisis de la diversidad del microbioma de organismos antárticos como las esponjas y otros invertebrados marinos, utilizando para ello herramientas de secuenciación masiva del ADN, así como análisis bioinformáticos, todos ellos llevados a cabo desde Punta Arenas en el Edificio de Laboratorios Antárticos “Jorge Berguño Barnes”, del INACH.

Instituto Antártico Chileno | Chilean Antarctic Institute
Instituto Antártico Chileno | Chilean Antarctic Institute

Por otro lado, entre las interrogantes que Valdespino busca resolver están los patrones de distribución, presencia o ausencia de microorganismos, caracterización de la diversidad y conductores ambientales.

Luego de lo anterior y tras el análisis metagenómico, los científicos trabajarán en la descripción de las estrategias de supervivencia para los ambientes extremos de baja disponibilidad de nutrientes, los ciclos de congelación y circulación, algunos aspectos de la colonización y las estrategias de respuestas al cambio ambiental.

Este proyecto forma parte del Programa Nacional de Ciencia Antártica 2019 y se encuentra en su último año de ejecución.

Fuente: www.biobiochile.cl

Embryo stem cells created from skin cells

| Noticias |

Researchers have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modeling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

More information – www.sciencedaily.com

Avoid smoky environments to protect your heart

| Noticias |

If a room or car is smoky, stay away until it has cleared. That’s the main message of research presented today at EuroHeartCare 2019, a scientific congress of the European Society of Cardiology (ESC). (1)

«Avoid exposure to secondhand smoke regardless of whether the smoker is still in the room,» said study author Professor Byung Jin Kim, of Sungkyunkwan University, Seoul, Republic of Korea. «Our study in non-smokers shows that the risk of high blood pressure (hypertension) is higher with longer duration of passive smoking — but even the lowest amounts are dangerous.»

More información – www.sciencedaily.com

Stress, insomnia may triple death risk for those with hypertension

| Noticias |

A stressful work environment coupled with a lack of sleep can result in a threefold-higher risk of cardiovascular death in people with hypertension.

Recent research looked at how stress and insomnia affected the health of employees who have hypertension, and the news was sobering.

More information – www.medicalnewstoday.com

Calling time on ‘statistical significance’ in science research

| Noticias |

Scientists should stop using the term ‘statistically significant’ in their research, urges this editorial in a special issue of The American Statistician published today.

The issue, Statistical Inference in the 21st Century: A World Beyond P<0.05, calls for an end to the practice of using a probability value (p-value) of less than 0.05 as strong evidence against a null hypothesis or a value greater than 0.05 as strong evidence favoring a null hypothesis. Instead, p-values should be reported as continuous quantities and described in language stating what the value means in the scientific context.

More information – www.eurekalert.org

Boosting Plants’ Uptake of Vitamins and Minerals

| Noticias |

With genetic tweaks, researchers can coax corn and other cereals to take in more iron, but sometimes the plants rebel.

The corn Elsbeth Walker grows looks a bit strange. Its leaves are streaked with yellow, instead of being entirely green. This yellow-streaked corn is a mutant that has trouble taking in iron, making it hard for the plant to create chlorophyll, a green pigment involved in photosynthesis.

Walker, a molecular biologist at the University of Massachusetts Amherst, and her colleagues are studying the yellow-striped corn to learn more about how iron transport works in plants. The information they glean, she says, could help researchers genetically engineer corn and other staple grains to take in more of the mineral, and, ultimately, deliver it to people who lack sufficient iron in their diets.

“The places in the world where iron nutrition is really problematic are places where people are very under-resourced and are practicing subsistence agriculture,” Walker says. “In those areas, people are often eating very, very little meat—if any at all—and they’re also typically relying on rice or corn or another staple for the vast majority of their calories.” Such grain products take up very little iron from the soil, so people who rely on these products for a large part of their diets often do not get enough of the mineral.

Iron deficiency has numerous health implications, including stunting child development, particularly brain development, and health complications for menstruating women and pregnant women trying to support a healthy fetus, Walker explains. According to the World Health Organization, anemia—a condition commonly caused by iron deficiency—affects 1.62 billion people globally, almost 25 percent of the human population, and leaves them particularly susceptible to death from other diseases.

We’re struggling against millions of years of evolution to keep iron levels in check.

—Michael Grusak, Red River Valley
Agricultural Research Center

To combat iron deficiency, plant scientists and bioengineers have been looking for ways to boost iron levels in the foods iron-deficient individuals eat. The strategy is called biofortification, and so far, scientists have had some success selectively breeding plants, especially bean and rice plants, to take in more of the mineral. However, Walker and other molecular biologists and geneticists are looking at how they could tweak plants’ DNA to make the seeds sequester higher levels of essential vitamins and minerals.

Researchers have previously identified genes such as ferritin that, when expressed transgenically in rice, enhance iron uptake (Sci Rep 2:543, 2012). But in many attempts at genetic engineering, the seeds, the part of the plant where the researchers wanted the iron to go, didn’t necessarily accumulate more of the mineral as hoped, Walker says.

“Iron is a tough one because iron is toxic in excess for any organism,” says Michael Grusak, a plant physiologist and director of the Red River Valley Agricultural Research Center in Fargo, North Dakota. He has worked on other biofortification projects and explains that plants and animals have fine-tuned systems that regulate their uptake of vitamins and minerals. By fiddling with iron in plants, “we’re struggling against millions of years of evolution to keep iron levels in check.” Grusak says scientists “can put more iron into the plant, which is absorbed by the roots, but it has to go through all these checks and balances to get into grains, and often the plant says, ‘No, we are not going to do it.’”

A big challenge in overcoming such checks and balances, Walker notes, is that scientists do not yet understand the mechanisms that plants use to signal to their roots that they need to take up more, or less, iron. Several studies, including one recently published by Walker, show that corn and other plants use iron transport proteins, such as YS1 (Yellow Stripe 1) and YSL1 (Yellow Stripe-Like 1), to transport iron from the roots of a plant to its shoots and leaves (Front Plant Sci, 9:157, 2018). But exactly how the plant shoots tell the roots to adjust their rate of iron uptake, and whether the signal is positive or negative, isn’t clear.

Walker and her colleagues were recently awarded a grant from the National Science Foundation to identify this shoot-to-root signal. So far, they have determined that low iron concentrations in the leaf cells leads to the production of some sort of signal in a plant’s vasculature that turns on iron-deficiency–regulated gene expression in the roots. Preliminary, unpublished data suggest that this signal is RNA-based. If confirmed, the result would rule out the idea that iron signaling in plants is exclusively negative—with the shoots telling roots when to turn off iron uptake—as some scientists had previously hypothesized. “We have good evidence now for a positive signal that is being sent out by the shoots and is causing the roots to take up iron,” Walker says. “Our work now is to identify what that signal actually is.”

Grusak commends the work, but notes that if and when the iron-signaling mechanism is figured out, it will take time to move any genetically engineered plants that take advantage of the insights from lab to farm and finally to consumers. Not only does the science have to be solid, but scientists and bioengineers also have to ensure that the new crops have the right amount of the vitamin or mineral to improve human health, explains Howarth Bouis, co-winner of the 2016 World Food Prize and interim chief executive officer of HarvestPlus, a global nonprofit agricultural research program focused on developing and distributing biofortified food crops. For farmers, he says, the crop also has to have yields similar to those of current crops and be resistant to disease, and for consumers, it has to cook and taste just like the rice, corn, and beans they’re used to eating.

Right now, all biofortified crops available to farmers and consumers around the world are grown through cross-breeding plant varieties that have the highest levels of essential nutrients, such as iron, zinc, and vitamin A. There have been several trials of transgenic crops—specifically iron-, zinc-, and vitamin A-fortified rice—and these crops hold a lot of promise for producing plants that have boosted nutrient profiles and are also high-yield and drought resistant. But none have yet become commercially available to farmers and consumers, in part, Bouis notes, because of regulatory restraints on genetically modified foods.

Getting biofortified plants to those who need them most, Grusak says, is “taking longer than we’d like.”

Source: www.the-scientist.com

Companies Use CRISPR to Improve Crops

| Noticias |

The agritech industry is editing plant genomes to feed a growing population, expand the produce aisle, and make tastier, more convenient food products.

Consider the groundcherry. Unlike its relative, the tomato, the groundcherry has never been fully domesticated. The plant’s sprawling growth and habit of dropping its small orange fruits on the ground before they’re ripe make it an awkward crop to cultivate, and its commercial presence is mostly limited to farmers’ markets.

But Joyce Van Eck of the Boyce Thompson Institute in Ithaca, New York, and Zach Lippman of Cold Spring Harbor Laboratory are working to change that. Because they don’t have the option of domesticating the groundcherry over thousands of years of selective breeding, as agriculturists did with tomato plants, the researchers are using CRISPR-Cas9 gene-editing technology to reproduce some of the tomato’s domestication-associated genetic changes. The pair recently used CRISPR to mutate the groundcherry equivalent of the tomato’s SELF-PRUNING gene, to try to rein in the groundcherry’s sprawling shoots (Nat Plants, 4:766–70, 2018). They’ve also edited a gene called CLAVATA, which controls fruit size, to generate larger groundcherries.

By making these and other modifications, the researchers aim to develop a groundcherry that can be mass-produced and sold as “the fifth berry crop,” Lippman says, alongside blueberries, raspberries, strawberries, and blackberries. (See “Zach Lippman Susses Out How Gene Regulation Affects Plant Phenotypes” here.) In doing so, Lippman and Van Eck, both of whom consult for the agritech company Inari Agriculture, based in Cambridge, Massachusetts, join many other researchers and entrepreneurs hoping to use CRISPR-Cas9 to tinker with plant genomes in pursuit of goals such as expanding the diversity of produce in the supermarket and improving crop yield for a human population expected to reach 10 billion by 2050.

“You’ve got essentially arable land being taken out of production to build cities and towns,” says Oliver Peoples, CEO of agritech company Yield10 Bioscience, based in Woburn, Massachusetts. “At the same time you need to increase food production to feed the inhabitants of all those cities and towns. So clearly the only way that that works is that every acre of land has to become more productive.”

The potential of gene editing to address these problems has taken hold in the agricultural industry, with new companies hoping to capitalize on the technology sprouting up every year. “We can identify a handful [of companies] currently, but going forward that number will rise, perhaps even triple,” says Matt Crisp, CEO of Benson Hill Biosystems, an agritech company based in St. Louis, Missouri.

There have been a handful of regulatory successes, too. Since 2016, when a CRISPR-edited non-browning mushroom received the green light from the United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS), the agency has also confirmed that CRISPR-edited corn, soybeans, tomatoes, pennycress, and camelina would be free from some of the red tape associated with other genetically modified organisms (GMOs)—though they may be subject to regulation by the Food and Drug Administration and the Environmental Protection Agency at a later date.

While none of these CRISPR-edited crops have yet made it to market, new plants are being edited all the time: last year alone, for instance, published research included efforts to tweak the genomes of carrot, cacao, and lettuce. “We regularly eat between 50 and 100 food products from 50 to 100 different crops,” says Haven Baker, cofounder and chief business officer of North Carolina-based agritech company Pairwise. Despite some concerns and uncertainty about the regulatory future of genome-edited food, “there’s CRISPR research going on in almost all of them.”

Engineering better plant products

Genetic improvement of crops has long been a goal for the agritech industry. But before CRISPR, most companies were limited to using transgenes—an approach that Tom Adams, cofounder and CEO of Pairwise, calls “a little bit of a blunt instrument.” Researchers couldn’t control where in the genome inserted transgenes landed, so they’d have to screen many plants until they found one in which the transgene had wound up in a good spot. While more-recent approaches, such as zinc finger nucleases and TALENS systems, have allowed researchers to edit specific genes, those techniques are expensive and still lack precision.

“Then CRISPR hit the scene, and it is fast and easy and inexpensive and gives great results,” says biotech expert and consultant Vonnie Estes, who worked for Monsanto in the ’90s and later for CRISPR-championing biotech Caribou Biosciences.

Researchers can use various techniques to insert CRISPR technology into plant cells: a gene gun to shoot the DNA or RNA in on tiny gold pellets, for example, or Agrobacterium tumefaciens, a crown gall bacterium and plant pest that inserts its DNA into plant genomes. A third approach is protoplast transformation, in which plant cells missing cell walls are transformed with CRISPR constructs. Transformed cells can then be cultured and eventually grown into plants.

Several companies are using these techniques to boost plant productivity. Yield10, for example, aims to improve the yields of crops such as canola and soybeans, and increase the oil content of these and other oilseeds. Company researchers are currently working to develop a variety of the yellow-flowered oilseed Camelina sativa, in which three genes, whose identities are proprietary, have been inactivated. Yield10 recently announced encouraging greenhouse results suggesting that these triple-edited camelina lines could increase the oil content of seeds, and plans to start field tests of the lines sometime this year.

The rules surrounding the regulation of CRISPR-edited crops are still in flux.

Pairwise, meanwhile, is focusing on making fruits and veggies more popular among consumers. The company, which started operating in 2018 and has so far attracted $25 million in investments, aims to shift people away from junk food by offering convenient produce. Just consider the success of easy-to-eat foods such as seedless watermelon, or baby-cut carrots (which are whittled down from normal carrots by machinery), suggests Adams. “When baby carrots got introduced, it basically doubled consumption of carrots and people were willing to pay for those carrots,” he says—“about five times as much as they pay for carrots that haven’t been made babies.” The company plans to use CRISPR-Cas9 and base-editing technology developed by Pairwise team member David Liu of Harvard University to make other fruits and vegetables easier to snack on. Pairwise won’t disclose information about specific products in development—but their first products should be on the market in four to five years, Adams says.

CRISPR could also be used to make tastier products, notes Benson’s Crisp. In traditional breeding, farmers tend to select plants with traits that benefit either the consumer or the farmer, he says. For example, some tomatoes can be shipped long distances, benefiting growers, but don’t taste very good, disappointing consumers. A goal for gene editing would be to engineer a tomato that has high yield, ships long distances, and tastes like it came from the garden, Crisp says.

One of the first CRISPR’d crops to hit the market might not be a food product at all, though food applications will likely follow. The crop is waxy corn, a variety edited to contain elevated levels of amylopectin and reduced levels of amylose via deletion of the gene Wx1. High-amylopectin cornstarch could improve freeze-thaw properties of frozen foods and make canned foods and dairy products creamier—though its first application, says a spokeswoman from Corteva Agriscience, the agricultural division of DowDuPont, will likely be as an adhesive to stick labels to bottles. Corteva expects that products containing the CRISPR’d starch, starting with adhesives, will be available within the next year or two.

To aid identification of genes underlying traits such as waxiness or sprawl, Benson, which has raised nearly $95 million from venture capitalists since 2012, has developed a software system called CROP-OS. The system has three main applications: Breed, to predict the outcomes of breeding different strains; Reveal, to find potential transgenes from other species; and Edit, to bring together information about different strains of crops, their genes, and their characteristics so that researchers can plan genome editing to suit their goals. Once collaborators have chosen the genes they want to edit, Benson either does the editing for them using Cas9 alternatives Cpf1 and Cms1, or, more often, ships them a CRISPR toolkit so they can do it themselves, Crisp says.

A selection of companies using gene-editing techniques for crop improvement

Company Location Year Established Selected Tools/Services
Focus Crops
Benson Hill Biosystems St. Louis, MO 2012 CROP-OS software; gene editing using CRISPR-Cpf1 and -Cms1 Row crops edited for higher yield, stress resistance, and herbicide tolerance
Corteva (agricultural division of DowDuPont) Wilmington, DE 2018 CRISPR-Cas9 Waxy corn modified for altered starch composition
Pairwise Durham, NC 2018 CRISPR-Cas9 with base editing Row crops such as corn and soybeans with increased productivity, disease resistance; more-convenient fruits and vegetables
Syngenta Basel, Switzerland 2000 CRISPR-Cas9 Corn, soy, wheat, tomato, sunflower, modified to increase yield
Tropic Biosciences Norwich, UK 2016 CRISPR and other techniques Disease-resistant bananas, decaffeinated coffee
Yield10 Bioscience Woburn, MA 2015 CRISPR-Cas9 Camelina engineered for higher oil content

Regulating CRISPR-edited crops

As industry researchers explore the opportunities to genetically improve consumer crops, they’re keeping a close eye on the regulatory landscape that governs their ultimate success, says Estes. The biotech industry is “at a kind of a weird point right now,” she notes. “There’s so much work that’s being done in universities. . . . But as far as getting it into commercial companies and having them bring it to market, everyone’s sitting on the fence a little bit and a little nervous.”

That’s because the rules surrounding the commercialization of gene-edited crops are themselves in flux, as regulators struggle to keep up with rapid technological developments. Older, transgenic approaches involving the introduction of foreign DNA are tightly regulated in the US and Europe, leading to considerable costs for companies trying to market transgenic products. “Regulations around approval for the use of a plant species that’s been genetically engineered can take up to a decade or more and cost up to $130 million per genetic change,” says Peoples. So it’s only something companies can do if they have a lot of money to invest—and they’ll only do it for a crop that’s going to make a lot of money, such as corn or soybeans.

Products generated by gene-editing techniques such as CRISPR have historically not been subject to the same rules, meaning that a larger number of smaller companies can afford to get into the sector. Genome editing has “really democratized this sort of innovation in the agricultural space in enabling smaller companies like Yield10 and others to begin to really make an impact using new approaches that perhaps the ag majors hadn’t tried in the past,” Peoples says.

However, the days when gene-edited crops circumvent regulation may be drawing to a close. Last July, the European Court of Justice ruled that, going forward, gene-edited crops would be subject to the same stringent regulations in Europe as transgenic plants—a ruling that surprised many researchers and went against the counsel of the court’s own advisor on the subject. The court based its decision on the fact that gene-edited plants, like other GMOs, change organisms’ genetic material in ways that do not occur in nature.

See “No Regulatory Exemption for Gene-Edited Crops in EU

Crisp says that he and other researchers in agritech were sorely disappointed by the ruling, and there are now moves to try to change course. The European Commission’s chief scientific advisors issued a statement highlighting the impossibility of determining whether a mutation occurred through gene editing or through natural mutation and suggested it would be better to focus on the safety of the product, rather than on the process by which it was created. (See “Opinion: GE Crops Are Seen Through a Warped Lens” here.)

Regulation has so far taken a different path in the US. In 2016, lawmakers passed the National Bioengineered Food Disclosure Law, which required manufacturers to label products containing “bioengineered” food—defined as food “(A) that contains genetic material that has been modified through in vitro recombinant deoxyribonucleic acid (DNA) techniques; and (B) for which the modification could not otherwise be obtained through conventional breeding or found in nature.”

Jennifer Kuzma, codirector of the Genetic Engineering and Society (GES) Center at North Carolina State University in Raleigh, tells The Scientist that part (B) of this definition was probably added “in order to exclude gene-edited plants” from the labeling requirement, and thus reduce regulatory red tape for these products. Similarly, a draft ruling issued last May about how the requirement would be implemented omitted mentions of “editing” or “CRISPR,” and the final ruling, issued in December, does not explicitly state that gene-edited foods will be subject to the disclosure requirements.

In another regulatory win for producers of CRISPR-edited crops, last March, the US Secretary of Agriculture Sonny Perdue announced that the USDA would not regulate crops that “could otherwise have been developed through traditional breeding techniques as long as they are not plant pests or developed using plant pests,” again clearing the way for plants created through genome editing. (Even methods that rely on A. tumefaciens can skirt the pest clause by ensuring that no bacterial sequences remain in the genome of the final product.)

See “USDA Will Not Regulate CRISPR-Edited Crops

Of course, not everyone in the US believes that less regulation is better. As Kuzma writes in a recent review article, most consumers want the government to ensure the safety of genetically modified crops, and 60 percent of biotech experts she surveyed support some kind of pre-market oversight. Kuzma, who says she is neither for nor against the development of gene-edited crops, notes that some regulation, as well as clear labeling of gene-edited foods, is necessary to avoid a repeat of the consumer backlash against GMOs, and that these measures are in the long-term interests not just of consumers but also of agritech companies.

Estes believes consumer backlash will be less of an issue once appealing CRISPR’d crops, such as the groundcherry, start to hit shelves. “Some segments of people aren’t going to care as much about how it was done,” she says, “as long as they get this amazing thing they get to eat.”

Ashley P. Taylor is a freelance writer and science journalist in Brooklyn, New York.

Source: www.the-scientist.com